トウキョウX豚の造成試験

III. 選抜式の作製

小嶋 禎夫・井頭 熱・渡辺 拓

Experiments to Produce High-quality Pig Tokyo-X (III)

Sadao KOJIMA, Isao HYODO and Akira WATANABE

【要旨】

当場では、肉質の優れた豚肉を達するために、肉質の良いと言われているパーカーシャー（B）種とデロックス（D）種及び北京黒豚（Pe）種を用いて交雑を行い、肉質の良い個体を著者選抜して合成豚による系統の造成に着手した。基礎豚として導入した3品種間の合成過程として異種種同士を生逆6通りの組み合わせで交雑し、生産子豚の成績より、選抜に必要な遺伝的パラメーターを推定した。

1. 分離頭数は、PeB（大体×B豚）において純種の成績が大きく上回った。2. 初期発育は、無にPe種を交雑したものに有意な傾向がみられた。3. IDでは、特にPe種とD種の組み合わせにおいて両親の成績を大きく上回った。BFでは、Pe種の交雑豚において高い傾向があった。

【まとめ】

選抜指標法による豚の系統造成は、複数品種の改良を目的とした純種豚の改良に用いられ、系統豚が造成されることが知られている。

育成豚の成績が、90kg_{1}を達成時の第1次選抜において、育成豚の117平均増体重（DG）、背脂厚さ（BF）及びロース断面積（IM）を測定した。さらに、各豚の育成豚の中央から去勢と雌を一頭ずつ栽培して兄弟豚の技術から得られた筋肉間脂肪（IMF=Intra-muscular fat）の割合、4形質を主な選抜形質とした。第1次選抜は、独立補数法により、第2次選抜は、BLUP（最良順形不偏予測）法によった。そこで今回は、3品種の合成過程とGIの選抜までを報告する。

合成豚の作成

導入した3品種を合成豚として、改良を開始するためには、平成2年10月から平成3年1月の間に異種種間で正逆6通りの組み合わせにより交雑し、平成3年2月から同4月にかけて分類を完了した。実際に交雑を実施した母豚34頭に対して33頭が受胎し、受胎豚の全てが分娩した。こうして得られたF_{1}豚全31頭を用いて調査を実施した。各豚ごとに毎週体重測定を実施し、1群平均が20kg_{1}に達した時点で第1次選抜を行った。第1次選抜では、全豚にハロセンテストを実施し、異常肉質であるPSE豚（ムレ豚）の遺伝的要因となるPSS豚ストレス腎症（横）豚を調査した。豚の成績は、育成豚を貯蔵し、一方、成長の速さ、一般外見、筋肉質を基本的な選抜の項目とした独立補数法により、各豚から豚1頭、去勢豚1頭、雌豚1頭を選抜した。これら5頭を豚群で、豚肉の肉量を実験的に BLUP法アシールモデルによって算出した。豚の保存性を検査的に用いた。
選抜とした。選抜は、基本的に総合育種価の推定値に基づいたが、品種の偏りに注意を払って実施した。また、F1の成績を純粋種と比較するために、ヘテロシスの大きさを示した。正逆6通りの組み合わせによる交雑豚（F1）のヘテロシスの計算は、以下の式を用いた。

\[H = \left(\frac{(\text{Cm} - \text{Pm})}{\text{Pm}} \right) \times 100 \]

但し、Hはヘテロシスの大きさ（%）、Cmは交雑種の能力、Pmは母系に用いた系統の能力の加重平均である。

F1同士の交雑は、F0生産の考え方と同様に、30通りの組み合わせから3品種が混ざり合う交雑を選び、平成3年11月の1ヵ月の間に交雑を終了し、平成4年3月までに35頭の分飼を完了した。本世代を2次選抜では、基準豚（G0）とF1の成績を基にして求めた選抜に必要な遺伝的パラメーターを導入、多形質のBLUP法をアルモードモデルを用いて育種価を計算した。基本的には総合育種価の高い個体を選抜した。遺伝的パラメーターの推定は、W. R. Harveyの最小自乗法による分散分析プログラムLSMLMWを用いた。BLUP価は、アルモードモデルによる多形質の育種価最良状態に偏りを与えるために開発されたソフトMBSLP9（農水省畜産試験場育種部育種第2研究室（以下育種2研）佐藤正寛（1990））によった。

\[\text{結果} \]

F1（G0×G0）では、自然交配を実施した雌豚34頭に対し33頭が受胎し、その全てが分娩した。繁殖成績と子豚の体重は表1のとおりである。雄としてP0に交配し、そのものの繁殖成績が良か、特にBP（♀B×♂Pe）の生時体重から5週令までの初期発育が優れていた（表1）。産肉能力検定の成績（表2）では、IMFにおいてバラツギが大きく（変動係数で23.8～58.8%）、改良の余地を示した。

Dグループでは特にP0種とD種の組み合わせにおいて両親の成績を大きく上回った。これはヘテロシスによるものと考えられ、その値を表3に示した。それによるとBD間で、4形質のほか乳頭数及び乳頭数に優れていた。BDでは、IMFにおいて38.5%のヘテロシスが現れた。

異常肉質であるPSE肉の遺伝的要因となるPSS豚の調査は、275頭の子豚について体重20kg到達時にハロセン麻酔により行った。その際、合成豚であることを考慮して、この形質に関しては選抜を行わなかった。その結果、全体の陽性率は2.18%を示し、純粋種の平均値1.93%に比べて0.25ポイント高かった。純粋種のP0種では陽性豚は全く観察されなかったが、今後BP（♀B×♂Pe）において4.54%の陽性豚がみられたことにより、P0種にもPSS形質の存在が示唆された（表4）。

繁殖成績と肉質の関係を表5と6に示した。B種とP0種のF1の成績は、ハム率においてB種とD種のF1及びD種とP0種のF1を下回ったが統計上有意な差ではなく、その成績においても交配品種による差は認められなかった。肉の伸縮率、加熱損失率、色差値においても、F1の6通りの組み合わせ間に有意差は認められなかった。IMFは、品種間交雑により平均化する傾向を示した。遺伝相関を表型相関を表7に示した。IMFとDの間には0.64、B間には0.63、E間には-0.41の遺伝相関が認められた。

<table>
<thead>
<tr>
<th>品種</th>
<th>分娩数</th>
<th>平均産子数</th>
<th>哺乳開始頭数</th>
<th>離乳頭数</th>
<th>初期育成率（%）</th>
<th>生時体重（kg）</th>
<th>3週令体重（kg）</th>
<th>5週令体重（kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>D B</td>
<td>8</td>
<td>9.8±2.0</td>
<td>76</td>
<td>72</td>
<td>94.7</td>
<td>1.39±0.26</td>
<td>5.0±1.2</td>
<td>8.1±1.9</td>
</tr>
<tr>
<td>DPe</td>
<td>5</td>
<td>10.4±2.4</td>
<td>51</td>
<td>47</td>
<td>92.1</td>
<td>1.36±0.21</td>
<td>5.1±0.7</td>
<td>8.7±1.3</td>
</tr>
<tr>
<td>B D</td>
<td>10</td>
<td>9.6±1.1</td>
<td>94</td>
<td>92</td>
<td>97.8</td>
<td>1.29±0.27</td>
<td>5.1±0.8</td>
<td>7.6±1.3</td>
</tr>
<tr>
<td>BPe</td>
<td>5</td>
<td>9.0±1.8</td>
<td>45</td>
<td>45</td>
<td>100.0</td>
<td>1.23±0.18</td>
<td>5.3±0.8</td>
<td>8.3±1.4</td>
</tr>
<tr>
<td>PeD</td>
<td>2</td>
<td>8.5±2.1</td>
<td>16</td>
<td>16</td>
<td>100.0</td>
<td>1.24±0.10</td>
<td>5.2±0.5</td>
<td>8.0±1.1</td>
</tr>
<tr>
<td>PeB</td>
<td>3</td>
<td>13.0±2.6</td>
<td>37</td>
<td>33</td>
<td>89.1</td>
<td>1.19±0.26</td>
<td>5.0±1.2</td>
<td>8.2±1.8</td>
</tr>
</tbody>
</table>

D: デュロック種，B: バークシャー種，Pe: 北京黒豚種
表2 産肉能力検定成績（正逆交配の比較）

<table>
<thead>
<tr>
<th>品種</th>
<th>n</th>
<th>DG (g)</th>
<th>BF (cm)</th>
<th>EM (cm)</th>
<th>IMF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>42</td>
<td>771.8 ± 80.0</td>
<td>2.8 ± 0.4</td>
<td>27.4 ± 3.4</td>
<td>3.92 ± 1.97 [18]</td>
</tr>
<tr>
<td>BD</td>
<td>46</td>
<td>810.4 ± 89.9</td>
<td>2.6 ± 0.4</td>
<td>30.7 ± 4.3</td>
<td>3.83 ± 1.44 [19]</td>
</tr>
<tr>
<td>DPe</td>
<td>23</td>
<td>846.2 ± 111.8</td>
<td>2.9 ± 0.2</td>
<td>24.9 ± 4.3</td>
<td>3.25 ± 1.91 [12]</td>
</tr>
<tr>
<td>PeD</td>
<td>8</td>
<td>842.1 ± 72.4</td>
<td>2.7 ± 0.1</td>
<td>28.6 ± 2.6</td>
<td>4.68 ± 1.11 [3]</td>
</tr>
<tr>
<td>PeB</td>
<td>14</td>
<td>768.8 ± 80.8</td>
<td>2.8 ± 0.3</td>
<td>25.0 ± 2.7</td>
<td>2.77 ± 0.74 [5]</td>
</tr>
<tr>
<td>BPe</td>
<td>23</td>
<td>786.4 ± 84.4</td>
<td>2.9 ± 0.4</td>
<td>24.6 ± 4.6</td>
<td>3.14 ± 1.20 [6]</td>
</tr>
</tbody>
</table>

*: p<0.05, **p<0.01, IMFは調査豚の成績のため例数[n]による

表3 ヘテローシス

<table>
<thead>
<tr>
<th>品種</th>
<th>DG</th>
<th>BF</th>
<th>EM</th>
<th>IMF</th>
<th>乳頭数</th>
<th>産子数</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>1.7</td>
<td>7.6</td>
<td>-5.1</td>
<td>28.1</td>
<td>2.7</td>
<td>4.2</td>
</tr>
<tr>
<td>BD</td>
<td>6.8</td>
<td>0.0</td>
<td>6.2</td>
<td>25.2</td>
<td>0.4</td>
<td>1.5</td>
</tr>
<tr>
<td>DPe</td>
<td>16.3</td>
<td>3.5</td>
<td>-15.3</td>
<td>-3.8</td>
<td>2.3</td>
<td>-3.7</td>
</tr>
<tr>
<td>PeD</td>
<td>16.0</td>
<td>-3.5</td>
<td>-2.7</td>
<td>38.5</td>
<td>1.4</td>
<td>-21.2</td>
</tr>
<tr>
<td>PeB</td>
<td>11.4</td>
<td>-6.6</td>
<td>-10.0</td>
<td>-1.8</td>
<td>2.7</td>
<td>20.0</td>
</tr>
<tr>
<td>BPe</td>
<td>13.9</td>
<td>-3.3</td>
<td>-11.5</td>
<td>11.7</td>
<td>0.9</td>
<td>-17.0</td>
</tr>
</tbody>
</table>

BFは符号を逆に表示している

表4 PSSの出現率（%）

<table>
<thead>
<tr>
<th>品種</th>
<th>DB</th>
<th>BD</th>
<th>BPe</th>
<th>DPe</th>
<th>PeD</th>
<th>PeB</th>
<th>F_全部</th>
<th>純粋種</th>
</tr>
</thead>
<tbody>
<tr>
<td>畜性率</td>
<td>4.22</td>
<td>2.81</td>
<td>4.54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.18</td>
<td>1.93</td>
</tr>
<tr>
<td>(n)</td>
<td>(2/71)</td>
<td>(2/71)</td>
<td>(2/43)</td>
<td>(0/46)</td>
<td>(0/16)</td>
<td>(0/28)</td>
<td>(6/275)</td>
<td>(5/259)</td>
</tr>
</tbody>
</table>

※（ ）内は陽性頭数／供試頭数を示す

表5 屠体の成績（調査豚成績）

<table>
<thead>
<tr>
<th>品種</th>
<th>n</th>
<th>ハム率 (%)</th>
<th>屠体長 (cm)</th>
<th>屠体幅 (cm)</th>
<th>背腰長II (cm)</th>
<th>平均背脂厚 (cm)</th>
<th>座脂厚 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB, BD</td>
<td>31</td>
<td>31.3 ± 1.2</td>
<td>90.6 ± 3.1</td>
<td>32.4 ± 0.9</td>
<td>66.2 ± 3.6</td>
<td>2.6 ± 0.5</td>
<td>1.0 ± 0.3</td>
</tr>
<tr>
<td>DPe, PeD</td>
<td>12</td>
<td>31.0 ± 1.3</td>
<td>89.4 ± 1.2</td>
<td>32.5 ± 1.3</td>
<td>64.9 ± 1.5</td>
<td>2.8 ± 0.4</td>
<td>1.1 ± 0.3</td>
</tr>
<tr>
<td>BPe, PeB</td>
<td>18</td>
<td>29.7 ± 1.4</td>
<td>90.1 ± 2.2</td>
<td>32.4 ± 1.4</td>
<td>66.2 ± 1.9</td>
<td>2.8 ± 0.4</td>
<td>1.2 ± 0.4</td>
</tr>
</tbody>
</table>
表6 豚肉の理化学的測定値（調査豚成績）

<table>
<thead>
<tr>
<th>品種</th>
<th>n</th>
<th>伸展率（%）</th>
<th>加熱損失率（%）</th>
<th>色L*</th>
<th>色a*</th>
<th>色b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>14</td>
<td>24.0±2.7</td>
<td>30.6±3.2</td>
<td>46.5±3.7</td>
<td>6.8±1.2</td>
<td>7.2±1.3</td>
</tr>
<tr>
<td>BD</td>
<td>15</td>
<td>24.2±3.4</td>
<td>31.1±1.6</td>
<td>48.1±3.0</td>
<td>5.9±1.3</td>
<td>7.3±1.1</td>
</tr>
<tr>
<td>DPe</td>
<td>9</td>
<td>23.7±2.7</td>
<td>31.2±1.4</td>
<td>48.0±3.0</td>
<td>6.2±1.1</td>
<td>7.3±1.2</td>
</tr>
<tr>
<td>PeD</td>
<td>3</td>
<td>22.3±3.2</td>
<td>31.4±2.2</td>
<td>48.6±2.5</td>
<td>5.4±0.8</td>
<td>6.5±0.8</td>
</tr>
<tr>
<td>PeB</td>
<td>4</td>
<td>24.9±2.6</td>
<td>30.9±1.3</td>
<td>47.0±3.2</td>
<td>6.7±1.2</td>
<td>7.4±1.4</td>
</tr>
<tr>
<td>BPe</td>
<td>4</td>
<td>24.9±2.6</td>
<td>30.9±1.3</td>
<td>48.5±2.1</td>
<td>5.6±1.2</td>
<td>7.2±1.0</td>
</tr>
</tbody>
</table>

L*：明度，a*：赤色度，b*：黄色度

表7 表型・遺伝相関（F1）

<table>
<thead>
<tr>
<th>H</th>
<th>r p</th>
<th>D G</th>
<th>D F</th>
<th>E M</th>
<th>I MF</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG</td>
<td>0.26</td>
<td>-0.18</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>0.34</td>
<td>-0.45</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>-0.04</td>
<td>-0.86</td>
<td>-0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMF</td>
<td>0.64</td>
<td>0.63</td>
<td>-0.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

r p：表型相関
r e：遺伝相関
n = 6 1

選抜の経過

1. 経済重要度

1日平均増体量、背脂肪の厚さ、ロース断面積及び背ロース部位（最後腰椎）における筋肉内脂肪の割合を選抜形質とした。前3形質に関しては選抜対象である各育成豚自身の測定値（1日平均増体重は体重30kgから90kgまでの間、背脂肪の厚さは90kg時の中直径測定による3部位の平均、ロース断面積は90kg時の中直径測定による体高1/2部位の値）、また筋肉内脂肪については生肉能力検定法で測定した同頭調査豚群（調査豚は各頭、雌1頭を原則とする）を情報（単位：g、cm、%）とする選抜を試み、各情報に対する重み付け係数b1を次の様に求めた。

(1)選抜特性値など
合成における選抜特性値についての依頼すべき推定値が無いため、今回の選抜には暫定的にF1のデータを使用した。
(2)改良目標
F1のデータを基にして、以下のとおり設定した。

(3)血縁係数行列R

1日平均増体量、背脂肪の厚さ及びロース断面積の情報は、選抜対象である育成豚自身のものであり、筋肉内脂肪の割合は、全きょうだい豚からの情報であるので、以下のとおり4形質目の対角行列は1/2として計算した。

\[
R = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1/2
\end{bmatrix}
\]

(4)遺伝分散共分散行列G及び表型分散共分散行列PをF1のデータより計算した結果は、以下のとおりである。

\[
G = \begin{bmatrix}
4584.874 & 6.143633 & -10.0384 & 44.11479 \\
6.143633 & 0.073564 & -0.77924 & 0.172924 \\
-10.0384 & -0.77924 & 11.22924 & -1.0393 \\
44.11479 & 0.172924 & -1.0393 & 1.026272
\end{bmatrix}
\]

\[
P = \begin{bmatrix}
7642.9 & 8.5447 & -73.0005 & 36.5997 \\
8.5447 & 0.1400 & -0.7880 & 0.2220 \\
-73.0005 & -0.7880 & 22.18206 & -1.85712 \\
36.5997 & 0.2220 & -1.85712 & 2.796161
\end{bmatrix}
\]
(5) 相対的経済重要度のベクトル a_j
以上のパラメーターから、改良目標に即した選抜指数
数式 I により簡便的に求めた重みづけ係数 a_i を用い
て $Pb=Rga^T$ という演算を行い、相対的経済重要度のベ
クトル a を算出した。選抜指数式的計算は、育種支援
プログラムPPPHI（育種2研古川力）の中の「改良目標
に基づく指標」によった。

$$I = 0.0238 \times DG - 18.0748 \times BF - 0.8280 \times EM + 3.3823 \times IMF$$

$$b = \begin{pmatrix}
 b_1 \\
 b_2 \\
 b_3 \\
 b_4
\end{pmatrix} = \begin{pmatrix}
 0.0238 \\
 -18.0748 \\
 -0.828 \\
 3.3823
\end{pmatrix}$$

$$a = \begin{pmatrix}
 -0.617 \\
 -273.4 \\
 -9.64 \\
 98.93
\end{pmatrix}$$

(6) 総合育種価の推定値
これらの結果から、前述のプログラムMBLUPを用いて
総合育種価の推定値を算出した。選抜は、候補選抜の
育種価を基に、基本的には該定値の高い個体から順に
次世代の繁殖種豚とした。
選抜前の各形質の育種価を以下に示したが、G1 階
団を選抜にかけるまでの間は、3 品種の血液を混ぜる
ことを優先したため、横ばいで推移している。

<table>
<thead>
<tr>
<th>生代内形質</th>
<th>DG</th>
<th>BF</th>
<th>EM</th>
<th>IMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0</td>
<td>-1.40</td>
<td>-0.91</td>
<td>0.05</td>
<td>-0.04</td>
</tr>
<tr>
<td>F1</td>
<td>-2.02</td>
<td>0.02</td>
<td>-0.43</td>
<td>0.01</td>
</tr>
<tr>
<td>G1</td>
<td>-2.86</td>
<td>-0.03</td>
<td>-0.13</td>
<td>-1.94</td>
</tr>
</tbody>
</table>

謝辞
本試験を実施するに当たり、ご助言をして頂いた農林
水産省畜産試験場育種第2研究室の西田朗室長、古川力
氏ならびに佐藤正寛氏に深謝します。

参考文献
1) 小嶋穣夫・兵頭順・渡辺栄：トウキョウX豚の造成
試験、I（I）基礎豚の肉質、東京畜試研報、2004.
2) 小嶋穣夫・兵頭順・内田哲二：トウキョウX豚の造
成試験、II（II）基礎豚の成績、東京畜試研報、2004.
3) 小嶋穣夫・兵頭順：高品質系統豚の造成、1、基礎豚
の成績、日本畜豚学会講演雑誌、55、1991.
4) 小嶋穣夫・兵頭順・渡辺栄・内田哲二・斎藤憲彦：
高品質系統豚の造成、2、第1世代の成績、日本畜豚学
会講演要旨、57、5、1992.
5) R. W. McKay, W. E. Rempe, C. J. McGrath, P. B.
Addis and W. J. Boylan : Performance characteristics of
crossbred pigs with graded percentages of pietrain. J. Anim.
6) 佐藤正寛：アニマルモデルによる多形質の育種価の
最良線型不偏予測、農林水産研究計算センター報告、
26、61-127、1990.
7) 阿部猛夫・西田朗・伊藤春・神野昌行・佐藤叡・三
上仁志：豚の地域環境別選抜試験、II、選抜指数式の
作製、日豚研誌18(2)、98-105、1982.
8) 横手賢生・山田行雄：選抜指数作成におけるRマトリ
ックスの導入、家禽会誌、10、151、1973.
9) 農林水産省畜試：豚の地域環境別選抜試験（指定試
験）総合報告書、1-48、1989.
10) 神野昌行・伊藤春：豚の地域環境別選抜試験、岩
手県畜試成績報告書、岩手県畜試験豚部、1-35、1989.
11) 伊藤春・神野昌行・西田朗・仁倉昭博・阿部猛夫・
山田行雄・田中弘敬・三上仁志：豚の地域環境別選抜
試験、IV、岩手県における選抜結果、日豚研誌22、2、
82-87、1985.
12) 佐藤叡・高坂宏夫・三上仁志・甲斐利明・黒木政博・
阿部猛夫・山田行雄・田中弘敬・西田朗：豚の地域環
境別選抜試験、V、宮崎県における選抜結果、日豚研
誌22、2、88-93、1985.